Roll No. \square
Total No. of Questions: 09

B.Tech.(CE) (2018 Batch)/(ECE) (Sem.-3)

MATHEMATICS-III (TRANSFORM \& DISCRETE MATHEMATICS)
Subject Code : BTAM-301-18
M.Code : 76373

Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly :
a) Define gradient of a scalar point function.
b) Define Solenoidal andfritational fields.
c) State Gauss diyfigence theorem.
d) Define L Olace transform.
e) Write the relation between Laplace and Fourier transform.
f) State Convolution theorem.
g) Write Gibbs phenomenon.
h) Define dirac-delta function and impulse function.
i) Write the Laplace transform of $t^{2} e^{-t}$.
j) If $u=x^{2} y i+y z j+z^{2} x k$. Find the divergence of u.

SECTION-B

2. Find the directional derivative of $\neq 5 x^{2} y-5 y^{2} z+2.5 z^{2} x$ at the point $P(1,1,1)$ in the direction of the line $\frac{x \square 1}{2} \square \frac{y \square 3}{\square^{2}} \square z$.
3. If $f=\left(x^{2}+y^{2}+z^{2}\right)^{-n}$. Find n if $\operatorname{div} \operatorname{grad} f=0$.
4. Solve the equation $\frac{d^{2} y}{d t^{2}} \square 2 \frac{d y}{d t} \square 3 y \square \sin t, y \square \frac{d y}{d t} \square 0$, when $t=0$, by the Laplace transform method.
5. Express $f(x)=x \sin x, 0<x<2$ /as a Fourier series.
6. Find the inverse Laplace transform of $\frac{s e^{\square s / 2}}{s^{2} e^{\square s}}$

SECTION-C

7. Verify Stoke's theorem for the vector field $\mathrm{F}=\left(2 x+y^{2}\right) i-2 x y j$ taken around the rectangle bounded by the luies $x=\square a, y=0, y=b$.
8. If $f(x)=\sin x, 0 \leq x / / \operatorname{nnd} f(x)=0$, - 友 $x \leq 0$, Prove that

$$
f(x) \square \frac{1}{\pi /} \frac{\sin x}{2} \square \frac{2}{/ \pi \square \square} \frac{\cos 2 n x}{4 n^{2} \square 1}
$$

Hence show that

$$
\frac{1}{1.3} \square \frac{1}{3.5} \square \frac{1}{5.7} \square \ldots \square \square \square \frac{\mathscr{2}}{4}
$$

9. a) Evaluate :

$$
L \stackrel{(\bigvee)}{e}{ }^{\square t} \int_{0}^{t} \frac{\sin t}{t} d t
$$

b) Show that $\nabla^{2}\left(r^{n}\right)=n(n+1) r^{n-2}$, where $r^{2}=x^{2}+y^{2}+z^{2}$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

